
Collaboration not 
Confrontation

Cybersecurity isn’t a Battle



Who am I?

• Peter Jakowetz - Managing Director of 
PrivSec Consulting

• Electrical Engineer by training
• I collect acronyms: CISSP, CISA, CISM, 

OSCP, PCIP,  CRISC, CCSK, CCSP
• Enjoy spending time fixing up the house 

and hanging with my partner and 18 
month old



What’s today about?



Agenda

• What is it that we do?
• Scoping
• During an engagement - How can we work together to get 

better outcomes?
• Post Engagement (Reporting)
• Understanding Context – What don’t we know?
• Thoughts
• Resources - How can you become more security 

conscious?



What is it that you do…



So… what is it that you do here

• We audit solutions and systems 
(GRC)

• We hack stuff to try and break it 
(Penetration Testing)

--
• We try and make sure solutions 

have been appropriately secured 
and data is appropriately protected



And what developers do

• Write code
• Move jira tickets (don’t worry – we do this too)
• Test code
• Release code
--
• Create software for use by everyone that meets the needs of the 

stakeholders <3



Pentesting TLDR;

• ‘Simulated cyber-attacks against your systems to try and find 
exploitable vulnerabilities’

• Mixture of manual and automated testing
• Bypass business logic



What process do we follow - Pentest

• Scope
• Reconnaissance and Planning
• Scanning and Enumeration
• Finding access vectors/ identifying vulnerabilities
• Maintaining access/ leveraging those vulnerabilities further
• Identifying recommendations to fix
• Writing it all up 



GRC/ Audit TLDR;

• We <3 acronyms
• We are identifying the presence or effectiveness of controls 

(depending on the type of assessment)
• Through a mix of audit methods

• Discussion
• Viewing documented processes
• Seeing what you’ve actually done – i.e. is the box patched? 



What processes do we follow - GRC

• Scope
• Come up with an audit plan
• Gather evidence

• Discussions
• Documentation
• System configs/ demonstrations

• Identify recommendations
• Write it up



Process

Scope Test/ Audit Report



Scoping



Testing Types

• Black Box
• No visibility of how things are built

• Grey Box
• Limited or partial access 

• White Box
• Full knowledge of how the sausage is made
• That might include having access to source code, documentation etc



Why does the testing type matter?

• “Testers are brought in to see if it’s hackable. Why should we give 
them any hints?”
• A testing engagement is typically 1-2 weeks
• A hacker might be sitting there trying to break your application for weeks/ 

months/ years
• Code and knowledge of how the app works can help identify issues 

quicker (and we can often provide better recommendations on how to fix 
things)



Case Study – No you can’t bypass our WAF

• We like to do our testing 
bypassing a WAF

• Gives us better visibility to your 
app

• We can find better issues and 
are less hindered in our testing

• More value for everyone (and a 
more enjoyable time testing)

• We would rather test  your app, 
than your WAF



Being Prepared - Scoping

• Being prepared during scoping can make sure you get value, and 
the testers are well prepared

• What roles are present?
• What’s the key functionality?
• Any major changes recently?
• What environment do you want tested?
• What’s your budget?



We want to know about your business rules

• Knowledge of how your business works and 
what’s important to you can allow us to focus 
our effort

• I.e. is availability super important? 
• Race conditions?
• Financial impacts?



Case Study – Context is key

• We found a race condition in a SaaS app
• Allows you to get additional licenses for free
• These are high value licenses
• Company relies on these licenses for their revenue…
• Suddenly makes it a much more important bug



Case study – Username enumeration

• A common, often low severity or informational finding is regarding 
ability to enumerate usernames in an application

• Different responses for success/ failure
• On the Countdown app – Who cares?
• For a portal providing support to those who have been subject to 

domestic violence…. Not very great



Why are you getting the security review done?

• Compliance
• ISO27001
• SOC 2

• Regulatory
• PCI DSS (credit card requirements)

• Customers have asked?
• You’ve recently been breached?
• You want to make sure you’re secure
• You’ve just released a big new feature



Case Study – Low value findings

• Doing some testing on a handful of apps for a client
• They’d been tested annually, and they knew there are a number of 

present outstanding low issues
• They provided those to us ahead of time
• We could put those in an appendix in the report, and focus our 

energy on finding new, different vulnerabilities
• Our testers were more engaged
• The client got more value out of the engagement 



During the Engagement



Audit - How can you make the process 
smoother? 
• Preparation!
• Prepare screenshots etc ahead of time
• Keep it simple – try and keep the jargon down, being aware the 

auditor hasn’t spent as much time as you with these technologies
• Provide responses in a timely manner – otherwise something may 

be noted as deficient as evidence was never provided
• If you don’t understand what’s being asked, ask for it to be 

clarified



Pentest – How can you make the process 
smoother
• Preparation! 
• Have accounts set up ahead of time
• Have code ready
• Set up a channel for comms
• Make sure the environment is ready



Communication!

• Spin up a slack channel with testers, so that regular conversations 
can be had during testing

• Make sure everyone knows when testing is happening
• You can then also see if correlations happen between logs/ alerts 

and the testing activity happening
• Did it trigger off alerts
• Has anyone been trying to figure out what’s happening



Purple team is the way forward

• We work *together* to get a good outcome
• Keep people abreast of what’s happened
• As soon as it’s compromised – provide feedback so we can get 

instant feedback
• Did you get any alerting?
• Full holistic view of what’s happening – look at multiple aspects.
• You might have logging in place – but have you actually looked at 

it? Is it triggering alerts?



Tight feedback loops

• Problem statement: I got a report at the end of a week’s testing – 
which has some cool stuff in it, but it was only because we hadn’t 
configured the environment correctly

• How can we get feedback back quicker?
• How can we make sure that the *right* stuff is being tested
• How can testing effort be maximised – so we end up with a robust 

secure product at the end
• We compromised the thing – what can we see?



Case Study – Broken comms

• Had a tester come to me saying they’d crashed a non-prod system 
• Rocked up to a friendly sys admin and asked them to restart the 

server
• “but it’s already up…”
• Someone had restarted the server, not aware it was crashing due 

to being exploited, and hadn’t noted it anywhere or raised any 
flags



Case Study – Bad Monitoring

• A password spray was done
• 2 bad passwords on every account in the org
• A project manager rocks up 3 days later and asks me if I know why 

every staff members account he was looking at had failed 
attempts at the same time on the same day

• The security team and IT teams hadn’t noticed



We don’t want to just say “Haha we popped a 
shell” 
• Popping shells and dumping databases is great!
• But it’s not really the aim of the game all in itself
• If we talk to each other more regularly during testing 

engagements, then we will still find those bugs – but we can work 
together 



Reporting



Reporting

• Language is important
• ‘Gross negligence’ is probably not the best term to use

• The lawyers get a bit excited

• Neither is ‘dumpster fire’
• Simple, respectful language that we can all understand



When we’re writing a report

• We have multiple people having to read our reports – so the whole 
thing probably isn’t for you

• Exec summary == C-level/ Manager
• Management summary == Project Manager
• Technical details == developers/ engineers



Ask questions

• Pentesters and auditors generally (if they’re not jerks) don’t mind 
answering good questions during testing and audit periods

• Just like you, we like to talk about what we do all day
• We’re generally happy to show you how to hack too, and demystify 

what we do
• Similarly, we’re happy to put together POCs, and run those 

through with you
• Have a play reproduction steps, and see if you can do it!



Case Study – Sometimes we find things we’re 
not expecting
• Internal test
• Tester sits at the end of a line of developers – hoodie, non-corp 

laptop, never introduced themselves
• At the end of the week is asked whether they’re the new team 

member and do they need any help… 



We don’t necessarily understand your context

• You’ve had some layoffs recently
• That SPA was a quick fix, and was going to be decommissioned 3 years 

ago
• The boss really wanted that feature, and no one else did
• That was put in just for one customer
• The guy who put that in left 6 years ago and we’ve been too scared to 

remove it
• That was the interns summer project
• There isn’t any investment for maintenance
• That feature’s being deprecated next month



You might not have been there when the code 
was written
• Technical debt exists
• Which can also mean security debt
• But that debt is usually what allowed for your job to exist
• We need to understand that apps aren’t rebuilt every day, and as 

such there will always be history 



We definitely weren’t there when the code 
was written
• We don’t know why the code is the way it is
• We don’t know what was happening that day
• We don’t know the requirements you were working to
• We don’t know how many coffees the scrum master had that day 

and how much they were breathing down your back
• We don’t necessarily know the regulations etc you have to meet 

for your org and stakeholders



Functionality vs. Security

• It’s not always black and white
• People want to do their jobs – how can we balance the two 

requirements out?
• There’s got to be compromise
• There are stakeholder limitations/ cultural limitations/ financial 

limitations 
• A risk based approach (and having a convo) can be really helpful 

here



Case Study – Apps used by specific 
communities
• App for a specific segment of the community
• Lots of PII and funding info
• Not necessarily technically literate stakeholders
• There ends up being a conflict between functionality and security
• I.e. MFA – is that a step too far – especially when 70/80 years old 

pastors may be the ones using the tool for their community
• How do we balance that? 



Thoughts



Let’s not poop on each other

• “The testers didn’t even know what they were 
doing”

• “That app was terrible”
• “They don’t even understand what we do”
• “How could anyone build something that 

insecure”



If we work together – we can uplift each other

• We all have our specialties
• You (or your boss) pays us to come in, because we’re the experts 

in our domain
• While most of our testers used to be devs – they don’t do it for 

your org
• If you share some of your insight and work with us, and we work 

with you – we can get some really good outcomes



We know some (not so secret) secrets

• We’re looking at different systems and services every day
• At this point, I’ve reviewed hundreds (at least) of systems
• I’ve seen some amazing architectures, and some not so awesome 

ones too
• I’ve seen some legacy tech which has been implemented 

awesome and some new tech implemented terribly



If we know context, we can recommend 
different approaches
• If we talk together, often we can find a way through
• There might be tools we’ve seen in other engagements we can 

recommend
• We might be able to suggest a couple of compensating controls if 

you can’t remove a specific issue



Case Study – Large app developed by 3rd party

• Large app
• Multi-million dollar development effort
• ~3 year project
• Well over 100 security issues documented
• Pentesting didn’t go well 
• Audit went worse



We had 2 options

1) Wind up the vendor and make them feel bad
1) Easy option
2) Unlikely to win
3) Everyone feels bad

2) Work *with* the vendor, and aim to resolve the issues 
1) A whole lot more work
2) You might end up with something secure AND usable
3) A few less grey hairs, and less whisky consumed



We worked with them…

• And that led to good things
• Development effort took a while
• But we ended up with a secure product
• With no defects at go-live and a clean audit
• Everyone swallowed their pride a bit, and we went forward
• Compromise had to happen on both side – but we ended up with a 

secure and functional app that is used by a good chunk of NZ



Learnings from Security?

• Break issues into easy to read English
• What are the *real* impacts of an issue
• What is the *real* likelihood of an issue
• Award the small wins 
• Regular conversations are good!



What we’ve found works well

• Using clear concise language
• When development teams or a lead have been involved in scoping
• When we have a mechanism to talk to the technical team during 

testing
• When the org is well prepared for an audit/ test
• When orgs read and question the report
• When we have a solid understanding of the business context



Resources



How can you become more security 
conscious?
• Podcasts are great!

• Risky.biz
• Black Hills Information Security podcast
• Darknet Diaries

• Si’s pentesting guide has lots of great resources:
• https://www.linkedin.com/pulse/getting-started-penetration-tester-nz-

2023-edition-simon-howard 

https://www.linkedin.com/pulse/getting-started-penetration-tester-nz-2023-edition-simon-howard
https://www.linkedin.com/pulse/getting-started-penetration-tester-nz-2023-edition-simon-howard


Collaboration

• Discord – InfoSecNZ
• ISIG Wellington – Last Thursday of Each Month
• Meetups – OWASP
• OWASP Day – September 2024 (AKL)
• Christchurch Hacker Con – November 2024 (CHCH)



Links

• Burp Suite - https://portswigger.net/burp/communitydownload 
• ZAP Proxy - https://www.zaproxy.org/
• OWASP Secure Coding Practices - https://owasp.org/www-

project-secure-coding-practices-quick-reference-guide/stable-
en/ 

https://portswigger.net/burp/communitydownload
https://www.zaproxy.org/
https://owasp.org/www-project-secure-coding-practices-quick-reference-guide/stable-en/
https://owasp.org/www-project-secure-coding-practices-quick-reference-guide/stable-en/
https://owasp.org/www-project-secure-coding-practices-quick-reference-guide/stable-en/


Thanks for having me!

• peter@privsec.nz
• https://www.linkedin.com/in/peterjakowetz/ 

mailto:peter@privsec.nz
https://www.linkedin.com/in/peterjakowetz/

	Slide 1: Collaboration not Confrontation
	Slide 2: Who am I?
	Slide 3: What’s today about?
	Slide 4: Agenda
	Slide 5: What is it that you do…
	Slide 6: So… what is it that you do here
	Slide 7: And what developers do
	Slide 8: Pentesting TLDR;
	Slide 9: What process do we follow - Pentest
	Slide 10: GRC/ Audit TLDR;
	Slide 11: What processes do we follow - GRC
	Slide 12: Process
	Slide 13: Scoping
	Slide 14: Testing Types
	Slide 15: Why does the testing type matter?
	Slide 16: Case Study – No you can’t bypass our WAF
	Slide 17: Being Prepared - Scoping
	Slide 18: We want to know about your business rules
	Slide 19: Case Study – Context is key
	Slide 20: Case study – Username enumeration
	Slide 21: Why are you getting the security review done?
	Slide 22: Case Study – Low value findings
	Slide 23: During the Engagement
	Slide 24: Audit - How can you make the process smoother? 
	Slide 25: Pentest – How can you make the process smoother
	Slide 26: Communication!
	Slide 27: Purple team is the way forward
	Slide 28: Tight feedback loops
	Slide 29: Case Study – Broken comms
	Slide 30: Case Study – Bad Monitoring
	Slide 31: We don’t want to just say “Haha we popped a shell” 
	Slide 32: Reporting
	Slide 33: Reporting
	Slide 34: When we’re writing a report
	Slide 35: Ask questions
	Slide 36: Case Study – Sometimes we find things we’re not expecting
	Slide 37: We don’t necessarily understand your context
	Slide 38: You might not have been there when the code was written
	Slide 39: We definitely weren’t there when the code was written
	Slide 40: Functionality vs. Security
	Slide 41: Case Study – Apps used by specific communities
	Slide 42: Thoughts
	Slide 43: Let’s not poop on each other
	Slide 44: If we work together – we can uplift each other
	Slide 45: We know some (not so secret) secrets
	Slide 46: If we know context, we can recommend different approaches
	Slide 47: Case Study – Large app developed by 3rd party
	Slide 48: We had 2 options
	Slide 49: We worked with them…
	Slide 50: Learnings from Security?
	Slide 51: What we’ve found works well
	Slide 52: Resources
	Slide 53: How can you become more security conscious?
	Slide 54: Collaboration
	Slide 55: Links
	Slide 56: Thanks for having me!

